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ABSTRACT 
 
Calculations of the transport coefficients viscosity and thermal conductivity and the 
diffusion collision cross section of nitrogen atoms have been carried out as a function of 
temperature. The dilute gas transport properties of nitrogen atoms depend only on the 
interactions between two nitrogen atoms along various electronic potential energy curves. 
The results presented here include contributions from sixteen potential energy curves, 
four of which dissociate to two ground state nitrogen atoms with the others also dissoci-
ating to two nitrogen atoms, at least one of which is in an excited electronic state. Thir-
teen of the potential energy curves are represented by the Hulburt-Hirschfeleder potential 
which is the best general purpose atom-atom potential. This potential depends only on the 
experimental spectroscopic constants and not on any adjustable parameters. Where spec-
troscopic constants are unavailable, fits of the Hulburt-Hirschfelder potential to ab initio 
quantum mechanical results are used for two states and a fit of the Morse potential is used 
for the other state. The results presented here should be especially useful under conditions 
where nitrogen atoms are at high temperatures, such as during Space Shuttle re-entry. 
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 1. INTRODUCTION 

The theromophysical properties of nitrogen (N) atoms are important in air at high temper-
atures, in the chemistry and physics of the upper atmosphere [1], and in a variety of appli-
cations [2,3,4]. Experimental thermophysical property data is sparse [5,6,7,8,9] for N 
atoms because of the high temperatures required. Thus theory is usually relied on to cal-
culate thermophysical properties of N atoms. In this paper, the viscosity, thermal conduc-
tivity, and diffusion of N atoms are obtained using the kinetic theory of gases.  The 
transport properties are the viscosity [10], η; 
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the diffusion coefficient [10], D; 
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the translational contribution to the thermal conductivity [10], λtr; 
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and the internal contribution to the thermal conductivity [11,12], λint; 
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where T is the temperature, in K, M is the molecular weight in g/mol, p is the pressure in 
atm, Cp is the molar heat capacity at constant pressure in cal/mol/K, and σ2Ω(1,1)* and 
σ2Ω(2,2)* are the diffusion and viscosity collision integrals in A2, respectively, determined 
by the interaction between two N atoms as they “follow” a particular electronic potential 
energy curve. Equation (4) is valid subject to the assumption that the transport of internal 
energy is due only to a diffusion mechanism [11,12]. 
 
2. INTERACTION POTENTIALS 
 
When two ground state (4S) N atoms interact, they can follow [13] any of four electronic 
potential energy curves corresponding to an N2 molecule; the electronic states are the 
ground X1Σg

+ state and the excited A3Σu
+, 5Σg

+, and 7Σu
+ states. Spectroscopic information 

[14] and  quantum mechanical calculations [ 15,16] indicate that these four states are all 
bound although the latter two states have very small well depths (dissociation energies). 
 



At high temperatures, one or both of the interacting N atoms may be in an excited state 
and these should be included in the calculations. The excited states of N included in these 
calculations are the 2D and 2P states. Sixteen bound electronic states of N2 that dissociate 
to one or more ground or excited  atomic states are included in the calculations and listed 
in Table I. Thirteen of the electronic states have been represented by the Hulburt-Hirsch-
felder (HH) potential (see column 2 of Table I). This potential has been discussed in de-
tail elsewhere [17,18,19,20]. It depends only on the experimental vibrational-rotational 
spectroscopic constants for the given electronic state and not on any adjustable para-
meters. It is the best available general purpose potential for representing atom-atom inter-
actions with an attractive minimum in the potential [21,22,23,24,25] and it usually gives 
excellent agreement with experimental RKR potential energy curves for atom-atom and 
atom-ion interactions [21,23,26,27,28]. It also often reproduces the local maxima some-
times found at larger interatomic separations [29,30,31,32,33]. 
 
The theoretical electronic potential energy curves of Krauss and Neumann [15] for the 
5Σg

+ state and of Ferrante and Stwalley [16] for the 7Σu
+ state were carefully fit with the 

HH potential . This is described in detail in Ref. (20). The resulting fits are referred to as 
KN and FS, respectively, in Table I.  Since some spectroscopic constants are not known 
for the E3Σg

+ state, it was fit with a Morse potential (MP in Table I). More details about 
the potentials and the spectroscopic parameters for the sixteen states are given in Ref. 
(34). These particular states have been chosen since good quality potential energy curves 
are available, leading to good quality transport cross sections. 
 
AVERAGED COLLISION INTEGRALS 
 
When two or more states contribute to the collision integrals, the contributions from each 
state must be averaged. Using the notation of Ref. (35), the averaged values are given by 
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where k represents the sum over the electronic states and i and j represent the two inter-
acting species (N atoms in this case). The symbol αij,k represents the probability associ-
ated with each electronic state which is the degeneracy of each state divided by the total 
degeneracy of the electronic states that dissociate to the same atoms [35,36,37], call it 
ωij,k. As an example, for the singlet, triplet, quintet, and septet states that dissociate to 
ground state N atoms, the degeneracies are 1, 3, 5, and 7, respectively, and the ωij,k are 
1/16, 3/16, 5/16, and 7/16, respectively. 
 
However, the probability of a state must also account for the probability that the two 
atoms in their dissociated states are occupied at a particular temperature.  Assume the 
interacting atoms are at local equilibrium which is reasonable since the transport prop-
erties are near-equilibrium properties; i.e. the gradients in composition, energy, and 
momentum are small. The temperature-dependent probability of occupation of the states 
is given by the Boltzmann factor and 
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where Eij is the energy of separated atoms i and j, relative to the ground state 4S atoms as 
the zero of energy. 
 
For potential energy curves associated with one or two excited state atoms, the list of 
states in Table I is incomplete because the required spectroscopic information and/or 
theoretical calculations for the state are not available. For instance, when 4S and 2D 
nitrogen atoms collide, they can follow the following 6 pairs of potential energy curves 
[30,36]; 3Σg,u, 

5Σg,u, 
3Πg,u, 

5Πg,u, 
3∆g,u, and 5∆g,u where the symbols g and u represent 

gerade and ungerade, respectively, and denote the symmetry of the wavefunction upon 
interchanging the nuclei. Each Σ state has a degeneracy of 3 or 5, and each Π and ∆ state 
has a degeneracy of 6 or 10. The total degeneracy is 80. Thus the 3Σg state has a probabil-
ity of 3/80, the 5∆u state has a probability of 10/80, etc. Table I shows that only 6 of the 
12 states are included in this calculation due to the lack of the required information. The 
cross section for each state is multiplied by its appropriate probability for these calcula-
tions. When information becomes available to permit good quality calculations for the 6 
missing states, their contribution to the collision integrals can be included without redo-
ing these calculations. A similar approach is used for the other potential energy curves 
associated with N atoms in various states.  
 
The degeneracy averaged viscosity collision integrals, σ2Ω(2,2)*, are given in the second 
column of Table II as a function of temperature. The results are similar to those obtained 
previously [20]. For instance, when only the four molecular states dissociating to ground 
state atoms were considered, the viscosity collision integral at 10,000K was 3.8943, about 
2% less than the present result. This is reasonable. The viscosity collision integral is re-
lated to the probability of a collision and this should increase as atoms in excited states 
are allowed to collide. However, since the populations of the excited states are small 
(recall that few atoms are electronically excited even at 10,000K [38]), the number of 
collisions increases by a small amount even at 10,000K. The results show that, at 1,000K, 
the percent increase is smaller and, at 20,000K, the percent increase is larger.  
 
Again, there are other interactions that dissociate to the atomic states included in these 
calculations but they have not been included since information required to calculate good 
quality collision cross sections is not available. Although inclusion of these states would 
increase the cross sections, the increase will be small. Thus the usual conclusion [39] that 
the consideration of excited states changes the transport properties by a small amount is 
demonstrated by these quantitative calculations. 
 
EXCITATION EXCHANGE COLLION INTEGRALS 
 
Calculation of the diffusion coefficients is more complicated. When the dissociation 
products are in different states; e.g. dissociation to N atoms in the 4S and 2D states, it is 
actually the cross section for excitation exchange that determines σ2 )*,( s�Ω  for odd �  



[35]; e.g. the diffusion collision integral, σ2Ω(1,1)*. The excitation exchange process is for 
the reaction 
 

N  +  N*   →   N*  +  N 
 
Table I shows that excitation exchange dominates the diffusion process for half the inter-
action potential energy curves included in our calculations.  
 
This excitation exchange process is discussed in some detail for interacting N atoms in 
Ref. (36). Crude approximations to the g,u potential energy curves were obtained using 
the Heitler-London approximation and excitation exchange cross sections for the 4S + 2D 
and the 4S + 2P interactions were given, respectively, in Tables I and II of Ref. (36) at 
10,000K. 
 
Results for the degeneracy averaged diffusion collision integrals calculated here (without 
including the Boltzmann factor) at 10,000K are shown for the 5 different dissociation 
products in the second column of Table III and the results for the excitation cross sections 
from Ref. (36) are shown in the third column (they did not calculate an excitation cross 
section for the 2D + 2P dissociation products). The comparison is not quite fair since 
Nyeland and Mason [36] included (crudely) a contribution from all states and this work 
includes only half the states. However, almost all of the individual collision integrals 
calculated here lie between 1 and 10  (most between 3 and 7). Reasonably, if reliable 
potentials were available for the 6 state that dissociate to 4S + 2D atoms and that have not 
been included in these calculations, the diffusion collision integrals would be similar to 
those we did calculate. Thus, in the fourth column of Table III, the collision integrals for 
the states included in this work that undergo excitation exchange have been “renormal-
ized” as if they were all the states. A comparison between columns three and four is more 
reasonable. 
 
TRANSPORT PROPERTIES 
 
The viscosity and translational contribution to the thermal conductivity are given in the 
third and fourth columns of Table II, respectively. As expected from the discussion of the 
collision integrals, the results are very similar to those obtained when only the states dis-
sociating to ground state atoms were considered [20] since the contribution of excited 
states is limited. The differences are insignificant at 1,000K and 8% at 20,000K, as ex-
pected, since excited state contributions are larger at high temperatures.  
 

Yun and Mason [40] also considered states that dissociate to ground state atoms, repre-
senting the singlet and triplet states with a potential of the form - C/rn where r is the sep-
aration of the atoms and C and n are adjustable parameters, the quintet state with the 
exponential-6 potential, and the septet state with the exponential-repulsive potential. 
Their results, using somewhat less accurate potentials than those used in Ref (20) and 
here, were somewhat lower than the results in Ref. (20) (see Table VII) and 3% lower 
than these results at 1,000K and 12% lower at 15,000K. Capitelli and Devoto [37] also 



considered states that dissociate to ground state atoms. They represented the singlet, 
triplet, and quintet states with the Morse potential and the septet state with the expon-
ential-repulsive potential. Their results, also involving less accurate potentials that those 
used in Ref . (20) and here, were similar to the results in Ref. (20) (see Table VII) and are 
2% higher than these results at 5,000K and 11% lower at 20,000K. 
 
Thus there is reason to believe that there is little error in the results for the states that 
dissociate to ground state atoms. At 20,000K, the contributions of the 5 sets of dissoci-
ation products shown in Table III to the viscosity cross section are 3.1428, 0.2347, 
0.0314, 0.0235, and 0.0011, respectively. Thus, the states dissociating to 4S + 2D atoms 
make almost all the contribution, leading to results presented here that are roughly 10% 
higher than previous results [20,36,37]. Since only half the states have been considered in 
this 4S + 2D calculation, it is reasonable to expect that the true viscosity collision integral 
at 20,000K is about 10% higher than the result reported here with smaller discrepancies 
at lower temperatures. 
 
The degeneracy averaged diffusion integral obtained at 10,000K from the second column 
in Table III  is 3.5163, the result obtained using the charge exchange cross sections in the 
third column is 4.181, and the result obtained using the “renormalized” diffusion cross 
section in the fourth column is 3.7211. The 2D + 2P dissociation products have been ex-
cluded since the population of these dissociation products is very small and an excitation 
exchange cross section is not available for these states. The differences are significant; an 
11% difference between the last two results.  
 
Thus, the excitation exchange cross sections should be used to calculate diffusion coef-
ficients and, since they have only been calculated at 10,000K using crude potentials, the 
diffusion coefficients are not calculated here. The diffusion collision integrals calculated 
without including excitation exchange are given in Table IV but they would be larger if 
excitation exchange was included. Diffusion coefficients calculated using these collision 
integrals are an upper limit for the contribution to diffusion from these states. 
 
The contribution of excitation exchange to the transport collision integrals calculated here 
is relatively small at these temperatures but that it is not small for λint. Since the assump-
tion has been made that the interactions are adiabatic; i.e. they occur along only a single 
potential energy exchange, the only mechanism available for energy exchange is the 
excitation exchange process. Nyeland and Mason [36] considered the effect of excitation 
exchange  on λint due to the 4S + 2D and 4S + 2P interactions between nitrogen atoms and 
found that λ is increased by a factor of 1.16 relative to λtr (compared to an incorrect 
increase by a factor of 1.40 if the erroneously small diffusion cross sections are used in 
place of the excitation exchange cross sections); the difference is 17%. 
 
Nyeland and Mason showed [36] that, using an impact parameter approximation, it is the 
difference in energy between the g,u potentials that determines the excitation exchange 
cross section. Table I shows that excellent potentials are available for the g,u pairs  
W3∆u; G

3∆g and B3Πg; C
3Πu. We are currently doing calculations to on these pairs to 

determine how well the results agree with those of Nyeland and Mason [36] and to 



determine if the approximations they made that required them to make only a single 
Heitler-London calculation are reasonable.   
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Table I.            Electronic States of N2 

________________________________________________________________________ 

 Statea  Potential Used   Dissociated N Atomsb 

 
 X1Σg

+          HH                4S + 4S 
            A3Σu

+                   HH            4S + 4S 
B3Πg          HH            4S + 2D    
W3∆u          HH            4S + 2D 
B’3Σu

-          HH            4S + 2P 
a’1Σu

-          HH            2D + 2D 
a1Πg          HH            2D + 2D 
w1∆u          HH            2D + 2D 
5Σg

+          KN            4S + 4S 
 7Σu

+          FS            4S + 4S 
G3∆g          HH            4S + 2D 
C3Πu          HH            4S + 2D 
E3Σg

+          MP            4S + 2D 
C’3Πu          HH            4S + 2D 
b’1Σu

+          HH            2D + 2P 
H3Φu          HH            2D + 2D  
           

 
aThe states are listed in order of the bottom of the potential energy well for each state  
relative to the bottom of the potential energy well for the ground state; usually denoted as 
Te by spectroscopists [14]. 
bThe dissociation products are mostly from Ref. (26).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table II.          Thermophysical Properties of N Atoms 
 
 

T(K)        σ2Ω(2,2)*(A2)  η(105kg/m/s)        λtr(102J/m/s/K) 
 
 
           1000          7.2410           4.362        9.712 
            2000          5.9686           7.484      16.66 
           3000          5.3558         10.21      22.74 
            4000          4.9597         12.74      28.36 
            5000          4.7071         15.00      33.41 
            6000          4.4752         17.29      38.49 
            7000          4.3115         19.38      43.16 
            8000          4.1826         21.36      47.56 
            9000          4.0740         23.26      51.79 
         10000          3.9793          25.10       55.89 

       11000          3.8996         26.86      59.81 
       12000          3.8323         28.55      63.57 
       13000          3.7683         30.22      67.29 
       14000          3.7066         31.88      70.99 
       15000          3.6520         33.50      74.58 
       16000          3.6032         35.06      78.07 
       17000          3.5581         36.59      81.49 
       18000          3.5134         38.14      84.92 
       19000          3.4717         39.66      88.30 
       20000          3.4335         41.14      91.60 
__________________________________________________________________ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table III.          Diffusion Collision Integrals for N Atoms, σ2Ω(1,1)*(A2), at 10,000K 
 
 

Dissociation Products      This Work      Excitation Exchange       “Renormalized” 
 
 

   4S + 4S     3.4348   
   4S + 2D        1.1817    8.12   2.8647                       

    4S +  2P     0.3411  14.78   6.5941 
   2D + 2D     0.5099 
   2D + 2P     0.0593 

_____________________________________________________________________________________ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table IV.      Degeneracy Averaged Diffusion Collision Integrals for N Atoms 
 
 

T(K)             σ2Ω(1,1)* (A2)                           T(K)             σ2Ω(1,1)*(A2) 
 
 
      1000       6.4576    11000      3.4340 
      2000       5.3645    12000      3.3620  
      3000       4.8258    13000      3.2933 
      4000       4.4779    14000      3.2285 
      5000       4.2154    15000      3.1712 
      6000       4.0121    16000      3.1198 
      7000       3.8522    17000      3.0728 
      8000       3.7257    18000      3.0290 
      9000       3.5850    19000      2.9864 
    10000       3.5166    20000      2.9483 
________________________________________________________________________ 


